Smoothed Cox regression

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smoothed Functional Inverse Regression

A generalization of Sliced Inverse Regression to functional regressors was introduced by Ferré and Yao (2003). Here we first address the issue of the identifiability of the Effective Dimension Reduction (EDR) space. Next, we estimate the covariance operator of the conditional expectation by means of kernel estimates. Consistency is proved and this extends the results of Zhu and Fang (1996) in t...

متن کامل

Penalized Estimators in Cox Regression Model

The proportional hazard Cox regression models play a key role in analyzing censored survival data. We use penalized methods in high dimensional scenarios to achieve more efficient models. This article reviews the penalized Cox regression for some frequently used penalty functions. Analysis of medical data namely ”mgus2” confirms the penalized Cox regression performs better than the cox regressi...

متن کامل

Model assisted Cox regression

Semiparametric random censorship (SRC) models (Dikta, 1998), derive their rationale from their ability to gainfully utilize parametric ideas within the random censorship environment. An extension of this approach is developed for Cox regression, producing new estimators of the regression parameter and baseline cumulative hazard function. Under correct parametric specification, the proposed esti...

متن کامل

Implementing Box-Cox Quantile Regression∗

The Box-Cox quantile regression model introduced by Powell (1991) is a flexible and numerically attractive extension of linear quantile regression techniques. Chamberlain (1994) and Buchinsky (1995) suggest a two stage estimator for this model but the objective function in stage two of their method may not be defined in an application. We suggest a modification of the estimator which is easy to...

متن کامل

Smoothed quantile regression for panel data∗

This paper studies fixed effects estimation of quantile regression (QR) models with panel data. Previous studies show that there are two important difficulties with the standard QR estimation. First, the estimator can be biased because of the well-known incidental parameters problem. Secondly, the non-smoothness of the objective function significantly complicates the asymptotic analysis of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Statistics

سال: 1997

ISSN: 0090-5364

DOI: 10.1214/aos/1031594730